Banach-valued Henstock-kurzweil Integrable Functions Are Mcshane Integrable on a Portion
ثبت نشده
چکیده
It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f : [0, 1] −→ and a continuous function F : [0, 1] −→ such that
منابع مشابه
A SCALAR VOLTERRA DERIVATIVE FOR THE PoU-INTEGRAL
In [8] and [9] J. Jarník and J.Kurzweil introduced an integration process (called PU-integral) for real valued functions on an interval of n with the use of suitably regularC-partitions of unity, instead of the usual partitions. The PU-integral is nonabsolutely convergent and in dimension one falls properly in between the Lebesgue and the Kurzweil-Henstock integrals. In [4], without assuming an...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملReview of A garden of integrals , by Frank E . Burk ( MAA , 2007 ) Dedicated to the memory of Ralph Henstock ( 1923 - 2007 )
Riemann, Lebesgue, Denjoy, Henstock–Kurzweil, McShane, Feynman, Bochner. There are well over 100 named integrals. Why so many? Some are of historical interest and have been superseded by better, newer ones. The Harnack integral is subsumed by the Denjoy. Some are equivalent, as are McShane and Lebesgue in Rn, and Denjoy, Perron, Henstock–Kurzweil in R. Some are designed to work in special space...
متن کاملEstimates of the remainder in Taylor’s theorem using the Henstock–Kurzweil integral
When a real-valued function of one variable is approximated by its n th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue p-norms in cases where f (n) or f (n+1) are Henstock–Kurzweil integrable. When the only assumption is that f (n) is Henstock–Kurzweil integrable then a modified form of the n th degree Taylor polynomial is used. When the only assumption i...
متن کاملLinear Fredholm Integral Equations and the Integral of Kurzweil
We apply the Kurzweil-Henstock integral setting to prove a Fredholm Alternative-type result for the integral equation x (t)− K Z [a,b] α (t, s)x (s) ds = f (t) , t ∈ [a, b] , where x and f are Kurzweil integrable functions (possibly highly oscillating) defined on a compact interval [a, b] of the real line with values on Banach spaces. An application is given.
متن کامل